Tangent Bundles of Homogeneous Spaces are Homogeneous Spaces
نویسندگان
چکیده
منابع مشابه
Quantum Homogeneous Spaces and Coalgebra Bundles
It is shown that quantum homogeneous spaces of a quantum group H can be viewed as fibres of quantum fibrations with the total space H that are dual to coalgebra bundles. As concrete examples of such structures the fibrations with the quantum 2-sphere and the quantum hyperboloid fibres are considered.
متن کاملEquivariant Vector Bundles on Quantum Homogeneous Spaces
The notion of quantum group equivariant homogeneous vector bundles on quantum homogeneous spaces is introduced. The category of such quantum vector bundles is shown to be exact, and its Grothendieck group is determined. It is also shown that the algebras of functions on quantum homogeneous spaces are noetherian.
متن کاملFrames and Homogeneous Spaces
Let be a locally compact non?abelian group and be a compact subgroup of also let be a ?invariant measure on the homogeneous space . In this article, we extend the linear operator as a bounded surjective linear operator for all ?spaces with . As an application of this extension, we show that each frame for determines a frame for and each frame for arises from a frame in via...
متن کاملLocalization operators on homogeneous spaces
Let $G$ be a locally compact group, $H$ be a compact subgroup of $G$ and $varpi$ be a representation of the homogeneous space $G/H$ on a Hilbert space $mathcal H$. For $psi in L^p(G/H), 1leq p leqinfty$, and an admissible wavelet $zeta$ for $varpi$, we define the localization operator $L_{psi,zeta} $ on $mathcal H$ and we show that it is a bounded operator. Moreover, we prove that the localizat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the American Mathematical Society
سال: 1972
ISSN: 0002-9939
DOI: 10.2307/2037645